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ABSTRACT

Let (xl, cnsp xk) be a multinomial vector with unknown
cell probabilities (pl, el pk). A subset of the cells is
3 ' to be selected in a way so that the cell associated with
S _the smalleet cell probability is included in the selected

subset with a preassigned probability, P*. Suppose the loss
is measured by the size of the selected subset, S. Using

linear programming techniques, selection rules can be constructed

which are minimax with respect to S in the class of rules which
satisfy the P*-condition. 1In some situations, the rule
constructed by this method is the rule proposed by Nagel
(1970). Similar techniques also work for selection in terms

of the largest cell probability. The rules constructed in this
fashion are also minimax for selection in terms of Poisson

parameters.
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1. INTRODUCTION

In this paper, subset selection problems for the multi-
nomial distribution are considered. 1In these problems the aim
is to select a non-empty subset of the cells which contains
the cell with the highest or lowest cell probability. The
H goal is to find a selection rule which includes the highest

or lowest cell probability with probability at least equal to

a preassigned number, P*. Having satisfied this minimum

requirement, the goal is to find a rule which effectively
excludes non-best cells. This leads to the use of the number
of cells selected or the number of non-best cells selected as
a measure of the loss to the ex crironter. Minimax rules for
these losses are considered and the main result of this paper
is that minimax rules can be constructed by solving the
appropriate linear programming problem. The rule obtained

in this way in some situations corresponds to a particularly
simple and easy to implement rule proposed and studied by
Nagel (1970). This rule can also be shown to have another

optimal property if the cell probabilities are in a slippage

configuration.

The subset selection problem for multinomial distributions

e

has been previously considered by Gupta and Nagel (1967), Nagel

(1970), Fanchapakesan (1971) ard Gu.ta and Huang (197%).

i ol

liininax subset selecticn rules have been recently investigated

in a ¢eneral setting by Berger (1979).

e




Section 2 contains the necessary notation for a formulation
of the problem. In Section 3, the problem of choosing the
smallest cell probability is considered and the fact that mini-
max selection rules can be constructed using linear programming
methods is proven. Examples of rules constructed in this way
are given. A particular rule which arises as the solution to
the problem is further considered in Section 4. This rule is
found tc have a certain optimality property if the parameters
are in a slippage configuration. In Section 5, the analogous
results for the problem of selecting the largest cell proba-
bility are outlinced. In Section 6, +the fact that the rules
constructed in Sections 3 and 5 are also minimax for selection

in terms of Poisson parameters is explained.
2. NOTATION AND FORMULATION

. Let X = (xl, Sen Xk) be a multinomial random vector with

1 xi = N. Let p = (pl, ..., R ) be the unknown cell

i=] i k <

probabilities with Py
i=]1

will be denoted by p[l] € vsv € P

= 1. The ordered c~ll probabilities

(ky° The goal of the experi-

menter is to select a subset of the cells including the best

cell, the cell associated with p A correct selection, CS,

(1’
is the selection of any subset which contains the best cell.

If for a particular paraﬁeter value, P, more than one of the

cells is tied with thes 1124 p,, one of these cells will be
considered to be tagged and a CS occurs if the tagged cell is
selected. This assumption is not of essential importance and

can be dropped without effecting any of the results. But [t

4 09




elivinates ar-aerentg involvinglimits of parameter values.

A selection rule will be denoted by ¢(x) = (¢, (X), ..., ¢ (X))

where ¢ (x) is the probability of including the i*! cell in
the selected subset having observed X = x. The 01(5) are called

the individual selection probabilities. To insure that a non-

empty subset is always selected, only rules which satisfy
k
i=]
a selection rule must satisfy is that it has a certain
minimum probability of selecting the best cell. Let
P*, 1/k < P* < 1, be a preassigned fixed number. Only rules

which satisfy the P*-condition, viz.,

(2.1) inf P_(Cs[¢) 2 P*,

g ~
will be considered. The set of rules which satisfy the P*-
condition will be denoted by(}! .

Two losses which are commonly used in subset selection
problems are the size of the selected subset, S, and the
number of non-best cells selected, S'. The risk using a
rule ¢ when P is the true parameter is then the expected
subset size, Ep(s|2), or the expected number of non-best cells

selected, EP(S7I¢). Let

kK
(2.2) S(x) = ¢, (x).

Then 8(5) is the expected subset size having observed

X = x and sp(slz) = B (S(X) Q).

~ o~

Z 01(5) > 1 for all X will be considered. The first requirement




T ———

A selection rule, !*. is said to be minimax with respect to

S if et « Dr' and

(2.3) inf sup E,(S|¢) = sup E_(S|e*).
B 5 % " G e
P

~

Replace S by S' in (2.3) to define minimaxity with respect to
S'. Berger (1979) investigated minimaxity with respect to S
and S' in a general setting. In Section 3, selection rules

which are minimax with respect to S and S' will be constructed.

3. CONSTRUCTION OF MINIMAX RULES

In Theorem 3.1, the following class of selection rules will
be shown to be minimax with respect to S and S'. Let D* be
the class of selection rules which satisfy: (1) ’i(f) = 6i(xi)
for 1 s i s k, i.e., the selection or rejection of the ith cell
depends only on the number of observations in the ith cell;
(i1) Gi(m) > éi(n) if 0O smsnsNandl s1i s k, i.e., the
probability of selecting the ith cell decreases as the number
of observations in the itM cell increases;
(iii) S(x) = E §,(x4) is a Schur concave function of x

i=1

(iv) (Gi(xi)) = P* for 1 < 1 <« k where BO w (1/R: «sse 47K).

EEO

Remark 3.1. The requirement in (i) that the decision to include
or exclude the i‘M cell depends only on X{ may seem to be a

waste of the information contained in the other xj's. But i
k
since | X

= N, if X, is "large" then the other X,'s must be
i=1 i i

)

e e
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small and if xi is "small", some of the other xj's must be
large. So information about the other xj's is contained in xi
and the requirement is not as counterintuitive as it would be
in a problem in which the xj‘s are independent, e.g., the

normal means problem (see Gupta (1965)). The rules considered

by Nagel (1970) had property (i) as well as (ii) and (iv).

Remark 3.2. Condition (ii) seems reasonable since larger

values of Xy indicate larger values of P -

Remark 3.3. See Proschan and Sethuraman (1977) and Nevius,
Proschan and Sethuraman (1977) for a discussion of Schur
functions in statistics. 1In a sense, X majorizes b 4 if the
coordinates of x are more spread out than the coordinates of y.
The more spread out the cell frequencies are, the easier it
should be to decide which is the best cell and the smaller

the subset that need be selected. This is an interpretation of

condition (iii).

Remark 3.4. By Theorem 4.1 of Berger (1979), this is a necessary

condition if a rule is to be minimax with respect to S or S'.

Remark 3.5. Gupta and Nagel (1967) proposed and studied the {

following selection rule for this problem: select the ith

cell if X; s X in + C where Xnin = mln(xl, Y xk) and C is a
non-negative integer chosen so that the P*-condition is satisfied.

In general, this rule is not in D* since neither (i) nor (iii)




are true. In the special case of k = 2, however, it can be

verified that the Gupta-Nagel rule is in P* since x2 = e Xy

Of course, to satisfy (iv) exactly, this randomized version of

the Gupta-Nagel rule must be used:

[l X4 < Xnin * C
‘i(f) - 1“ xi = x"\in + C

y * X . +
¥ xl min c

So, by the following theorem, the Gupta-Nagel rule is minimax

if k = 2.

Theorem 3.1. If $ € D* then ¢ is minimax with respect to S

and S'.

Proof. The first fact to be verified is that if $ € D* then

¢ satisfies the P*-condition. Let Pi = {p: pj 2 py 2 0 for all

k
j =4iand ] p. =1}. Then inf P, (CSjg) = inf inf P_ (select
j=1 J p - lsisk P, B
 han cell|¢) = inf inf E, (?,(X)). Let Y have a binomial
1s<isk Pi ~ o

distribution with parameters N and P;- Then Ep(°i(5)) -

Ep (Gi(Y)). Since the binomial distribution has monotone
i

likelihood ratio and since 61 is a - ~increasing  function,

by Lemma 2, page 74 of Lehmann (1959), Ep (si(Y)) is nonin-
i

creasing in Py - So the inf E“(oi(X)) = inf Ep (ci(Y)) =
P ~ P i
i i

E (§,(Y)) = P*, Thus inf P (CS|¢) = inf P* = P* and ¢
pi=1/k i E( It 1sisk .

p
gatisfics the P*-condition. ©




Now (2.3) will be verified. By Theorem 3.1 of Berger
(1979), the minimax value is kP¥, so it suffices to show that
sgp EE(S|£) = xp+ for any ¢ ¢ D*. But, since S(x) is
Schur concave, by Application 4.2 (a) of Nevius, Proschan and

Sethuraman (1977) E,(S(X)|¢) is Schur concave in p and hence
-~

takes on the maximum value at p0 G 0 SRR ) <) I
k Kk~
E, (S(X)|¢) = [ E ¢,(X) = ] E (5(X)) = XP* by (iv).
Po i=1 ~0 i=] ~0 * 1

So (2.3) is verified.

Finally, by Theorem 3.2 of Berger (1979), if ¢ is
minimax with respect to S then ¢ is also minimax with respect
to 8'. ||

Other authors have provided bounds on E(S) for the rules
they have proposed. For example, Gupta and Huang (1975)
give an upper bound for E(S) when the parameters are in a
slippage configuration. But the result of Theorem 3.1 is
stronger in that minimaxity considers all parameter configura-
tions and the exact upper bound of ki* for E(S) is achieved.

D* is a wide class of selection rules which are minimax.
Finding one rule in D* which has an additional optimality
property may be accomplished by solving the following linear
programming problem. Consider $ = (61(0), LY 61(N),
F 62(0), ceey 62(N), R sk(O), “owp Gk(N)) as the solution

vector for which we wish to solve. Condition (ii) provides

kN linear constraints on the solution. Condition (iii)

provides additional linear constraints on the solution. For ex-

ample, since (6, 2, 0) majorizes (5, 3, 1), we must have
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61(6) + 62(2) + 63(0) < 61(5) + 62(3) + 63(1). Finally,

condition (iv) provides k additional linear constraints on

the solution. Subject to these constraints we wish to minimize
EE.(SIQ), a linear function of the coordinates of §, for

some g‘ * Po- The parameter :‘ could be some particular
parameter value in which the e¢xperimenter is particularly
interested. As an example, this problem was solved for

P* = .4(.1).9 and p' = (.1, .45, .1!5) and p' = (.2, .4, .4)
in the case where k = 3 and N = 6. The resulting minimax
rules are shown in Table 1. In finding these solutions, the
additional constraint was made that the solution was permuta-
tion invariant, i.e., Gi(m) = Gj(m) for all 1 < i, j s k

and all 0 s m s N. These solutions were obtained using the
NYBLPC computer program. This program uses the criss-cross
method as developed by Dr. Stanley Zionts. The computations
were done on the CDC CYBER 74 at the Florida State University

Computing Center.
4. A SIMPLE RULE

An examination of Table 1 reveals that, in all cases when
P* is large, the optimal rule obtained by solving the linear
programming problem, as outlined in Section 3, has the
following simple form;
1 xi < t
(4.1) 03(5) = 6*(xi) = {a X, = €.

lo X, > ¢

BRI
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Here t and a are chosen so that condition (iv) (Section 3) is

satisfied. 1llamely, let Y have a binomial distribution with

parameters l/k and N. Then t is the integer which satisfies
P(Y <t) sP* <P(Y s t) and a = (P* - P(Y < £))/P(Y = t),.
This rule is analogous to a rule proposed by Nagel (1970) for
selecting the largest cell probability. This rule is appealing
for its simplicity and because the constants t and a, needed
for implementation, can be easily obtained from a binomial
table. In this section the rule 2* is studied more closely.
First, in Theorem 4.1, ¢* is shown to be minimax if P* is
sufficiently large. Then, in Lemmas 4.1 and 4.2 and Theorem
4.2, 2' is shown to have the following opntimality property if
the parameters are in a slippage configuration. Suppose all
the cell probabilities are equal except for the ithag*

th

minimizes the probability of selecting the i cell if its

cell probability is larger than all the rest and maximizes the

th

probability of selecting the i cell if its cell probability

is smaller than all the rest among all minimax rules.

Theorem 4.1. Let Y have a binomial distribution with parameters

1/k and N. Then, if
(4.2) P* 2P(Y < ‘%) + Loy =y,
¢* is minimax with respect to S and S'.

Proof. By Theorem 3.1 it suffices to show ¢* ¢ D*. Conditions

(i), (ii) and (iv) are obviously satisfied by the definition of
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¢*. It remains to show that (iii) is true, i.e., S*(x) =
~k L
] §*(x;) is a Schur concave function of x.
i=1 3
To see that S* is Schur concave, suppose X majorizes y
k k & ~
where | ¥y, =HW'= | .
p=1 * =1
and Polya (1952, page 47), we may assume, without loss of

By the result of Hardy, Littlewood

generality, that x and y differ in two coordinates only, say,

. : - " T, Ty A TR R i
Xj > ¥y 2 yJ > xJ where X xJ yl Y3 Since the constants

t and a are chosen so that P(Y < t) + o P(Y = t) = P*, (4.2)

implies that either t > % or t = g and o 2 %. Since all of
the coordinates of x and y are equal, except the ith and jth,

S*(y) - S*(x) = 6*(y;) + §*(y5) - 8*(x;) - §*(xy). Since

Nz

k
Yy =Nandy, 20, 1 s 2 sk, y. s=st. If y, <t then
g=1" 1t 5 J J

6*(yj) = 6*(xj) = 1 and 6*(yi) > 5*(xi) so S*(y) - S*(x) =2 0.

If t = yj then t ¥ =Ny and S*(y) - S*(x) a+a=-0-120

2 J 3

5

since a 2 % if t = g. Thus S* is Schur concave. || s
b

Values of the lower bound given in (4.2) are tabled in E

Table 2 for k = 2(1) 10 and N = 1(1) 20. Table 2 reveals that,

q
for small values of k and N, this lower bound is reasonably i

small. But as k or N increases, the lower bound converges to

one. So Theorem 4.1 shows that ¢* is minimax only for moderate H
values of k and N. It can be shown that if N is an odd
number then the expression given in (4.2) is the same for both
N and N + 1. That is why one column suffices for each
consecutive odd-even pair in Table 2.

Now the behavior of ¢* when the parameter is in a

slippage configuration will be examined. For the remainder of




11

this section let p' = (p, ..., P, 9/ P, ..., P) where (k - 1)p + g =1

th

and q is the i coordinate. The following result will be

proven.

Theorem 4.2. Suppose 3* is minimax. Then among all minimax

rules, ¢, ¢* maximizes P  (select ith cell |2) if q < p and

th

¢* mininizes Pp_(select i" cell |¢) if g > p.

The proof of Theorem 4.2 will be accomplished via the

following two lemmas.

Lemma 4.1. Suppose q < p. Among all rules, ¢, which satisfy

PB (select ith th

0
cell [¢).

cell lg) < P*, ¢* maximizes PB,(select i

Proof. For any p and ¢, PB(select it

h
cell |£) E9¢i(§).
By the Neyman-Pearson Lemma, among all rules which satisfy

E 01(5) s P*, a rule which maximizes E ¢i(x) is given by

Ro N R' ’
: (5) qxi pN-Li
1 ) > t
P g
(4.3) ¢ (x) = {a i =
0 <

where t and a are chosen so that EB ¢.(X) = P*, Using the
Qe

fact that g < p, it can be seen that (4.3) is equivalent to

(4.1). ||




Lemma 4.2. Let g > p. Among all rules, ¢, which satisfy

;th th

P_ (select cell [¢) 2 P*, ¢* minimizes %_u(select i

~

Proof. The proof follows the same lines as that of Lemma 4.1. ||

Proof of Theorem 4.2. By Theorem 4.1 of Berger (1979),

every rule, ¢, which is minimax with respect to S or S' must

th ce11 [¢) = P*. So Theorem 4.2 follows

satisfy PE (select i
from Lemma: 4.1 and 4.2. ||

Seal (1955, Section 4) examinas a slippage problem,
analogous to the one considered in Theorem 4.2, for the
normal means selection problem. He shows, "approximately,"
that a certain rule has the property that ¢* has in the
multinomial problem. "Approximately" is Seal's term. It
refers to the fact that he used an asymptotic argument. But

his result can be proved exactly using the (l./uan-Dearson

Lemma as in Lemmas 4.1 and 4.2,

Bt Mo e e Dy e 2 Y T

5. SELECTION IN TERMS OF THE i
LARGEST CELL PROBABILITY. ]
In some problems the experimenter might be interested
in selecting a subset of the cells including the cell

associated with p[k], the largest cell probability. 1In this
problem a correct selection, CS, is the selection of any subset
including the cell associated with p . In this section, §
'

[k]
results analogous to those found in Sections 3 and 4 will be

briefly outlined.

Y i Dol vis outeorne oit
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The following class of selection rules can be shown to
be minimax with respect to S and S'. Let D* be the class of
selection rules which satisfy (i), (ii‘), (iii) and (iv)
where (i), (iii) and (iv) are as in Section 3 and (ii')
Gi(m) < Gi(n) if 0O smsnsNandl si s k, i.e., the
probability of selecting the ith cell increases as the number

th

of observations in the i cell increases.

Theorem 5.1. If ¢ ¢ D, then ¢ is minimax with respect to S

and S'.

Proof. This proof follows the lines of the proof of Theorem
3.1 where now (ii') is used to show that if ¢ ¢ D, then ¢
satisfies the P*-condition. ||

Rules in 0, can be constructed by solving a linear
programming problem. The condition that ¢ ¢ Da puts linear
constraints on the vector of selection probabilities
§ = (61(0), Sts Gk(N)). The § which minimizes EE;(S|Q) for
This was done for P* = .4(.1).9 and p' = (.8, .1, .1l) and
g" = (.6, .2, .2) in the case where k = 3 and N = 6. The
same rule was found to be optimal for both g' and g“. The
resulting minimax rule is presented in Table 3.

A particularly simple rule, which arose as the solution

to the linear programming problem when P* was large, is the

following:

AN

sl B S Fr T T—— — i

some p° # p,, subject to the constraint § ¢ U, can be solved for.
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5 1 if x; >t
(5.1) 0ay (X) = S,(x;) = qa if x, =t
0 if xi<t

where a and t are chosen so that condition (iv) is satisfied.
2* is the rule proposed by Nagel (1970). [ like [N in
Section 4, is minimax if P* is large and performs well in

3 the slippage configuration. Specifically, the following

two theorems are true.

Theorem 5.1. Let Y have a binomial distribution with parameters

1/k and N. Then, if
(5.2) P* 2 P(Y > 1) + 3 P(Y = 1),
$* is minimax with respect to S and S'.

Proof. If (5.2) is true then ¢, ¢ ,. The key point to

R —— k ~

verify is that S, (x) = §,(x,) is Schur concave. This can be
i=1 ik

verified using the fact that (5.2) implies either t = 1 and

-

af%ortﬂo.. [

For fixed values of N and P*, the lower bound given in

T T )

(5.2) is a decreasing function of k. So for fixecd N and P*,
¢« Will be minimax if k is sufficiently large. The value of

the lower bound given in (5.2) is tabulated for N = 1 (1) 20 !

and k = 2 (1) 10 in Table 4. !

Finally, [ performs well if the parameters are in a

th

coordinate. The

slippage configuration. Let g' ® (B sevr Pr Qs Po svvs P) j
where (k - 1)p + g = 1 and q is the i

following result, analogous to Theorem 4.2, is true.
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Theorem 5.2. Suppose [ is minimax. Then among all minimax

rules, ¢, ¢, maximizes ﬁ , (select ith cell |¢) if q > p and

¢, minimizes %‘.(select 1th cel1 l¢) if q < p.
The proof Bf Theorem 5.2 is completely analogous to the

proof of Theorem 4.2 and is omitted.
6. SELECTION RULES FOR POISSON PARAMETERS.

The selection rules constructed in Sections 3 and 5 can
also be used for selection problems involving Poisson parameters.
These rules will also be minimax for these Poisson selection
problems. Selection rules for the Poisson distribution have
previously been studied by Gupta and Nagel (1971) and Gupta
and Huang (1975). Goel (1972) showed that the usual location
and scale type selection rules do not satisfy the P*-condition

in this problem for large values of P*.

Specifically let ¥ = (? LRI ) be independent Poisson
random variables with parameters A = (xl, N xk).
Let N = { Y.. The goal is to select a subset of the
i=1

population includinq the one associated with the largest or
smallest parameter x.. The conditional distribution of Y
given N = N is multinomial with parameters p and N where

p; = xi/ { xJ S0 if N = N, we can use the rule constructed
in Section 3 or 5 for a sample of size N. This rule has the
property that PA(CslN =1) > P* for 0 - N < = and all A\. So
unconditionally, P (CS) > P* for all A, using this rule, i.e.,

A
the rule cati«fies the P*-condition. Similarly Ex(s) < kr*
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for all ) since E\(SIN = N) s kP* for 0 < N < = and all A, d.e.,
the rule is minim;x with respect to S. N is a complete
sufficient statistic for A on the set Qo = (s Al = ... = Ak).
By Lemma 1.1 of Gupta and Nagel (1971) if PA(CSIQ) = P* on Q,,
then PA(CSIN = N) = P* for 0 < N < «», But ;x(cs|£) = P* on q, is
a nece;sary condition for minimaxity by Theorem 4.1 of Berger

(1979). So considering rules conditional on N is natural in

this problem.

camas

> e e

—.

kT
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Table 1

Minimax selection rule for Py which minimizes EE.(S)

» {.}, . 45) k = 3
d(x) = P (select ith 1% = x)
E e 9 .8 7 6 «8
X \\\“~\\\
0 1.000 1.000 . 886 .759 .633
1 1.000 1.000 .86 .759 .633
2 1.000 1.000 .386 .759 .633
3 1.000 .545 .443 .380 316
4 .002 .000 000 .000 .000
5 .000 .000 .000 .000 .000
6 .000 .000 .000 .000 . 000
Ee.(S|6) 2.489 2.206 1.929 1.654 1.378
= (.2,
P .9 .8 s € 5
X \\\\\\\
0 1.000 1.000 .778 L6067 556
1 1.000 1.000 .778 .667 .556
2 1.000 1.000 .778 .07 <556
3 1.000 . 545 .778 .667 556
4 .002 .000 .000 .000 000
5 .000 . 000 . 000 .000 .000
6 .000 .000 .000 . 000 .000
EB.(sls) 2.625 2.336 2.042 1.750 1.458
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1,2

.5000
.6667
.7500
.8000
.8333
.8571
.8750
.8889

.9000

3,4

.5000
.7407
.8438
.8960
<9259
.9446
.9570
.9657

.9720

19

Table 2

Lower bound for P*

If P* 2 table entry, ¢* is minimax.

5,6

.5000
.7901
.8965
.9421
.9645
L9767
.9839
.9885

.9914

7,8

.5000
.8267
.9294
. 9667
.9324
. 9398
.3938
.9960

.9973

9,10

.5000
.8552
.9511
.9804
.9910
.9955
.9975
.9986

.9991

il,12

.5000
.8779
.9657
.9883
.9954
.9979
.9990
.9995

.9997

13,14

.5000
.8965
.9757
.9930
.9976
.9991
.9996
.9998

L9999

15,16

.5000
.9118
.9827
.9958
.9987
.9996

.9998

17,18

.5000
.9245
.9876
.9974
.9993
.9998

.9999

.9999 1.0000

1.0000 1.0000

19,20

.5000
.9352
.9911
.9984
.9996
.9999
1.0000
1.0000

1.0000

:
i
H
i
i
b
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Table 3

[Mininax selection rule tor Pk which

minimizes E ,(S) and E_ (8)
R R

' = 1.8, .1; .0) p" = {6, .2, .3) M=% k=3
§(x) = P(select £% oatl |Xi = X)
pe
X ‘\\\\\\ .S 8 .7 6 .5 .4
0 .000 .000 .000 .000 .000 .000
1 . 954 .574 .448 .384 .320 .253
2 1.000 1.000 .897 .768 .639 .507
3 1.000 1.000 .897 .768 .639 .507
4 1.000 1.000 .897 .7€3 .639 .507
5 1.000 1.000 . 897 .768 .680 .747
6 1.000 1.000 1.000 1.000 1.000 1.000
EB,(Slé) 1.904 1.635 1.446 1.276 1.322 1.025
F_.(8]6) 2.433 2.121 1.852 1.594 1.341 1.112




L]

-

e |

"

10
11
12
13
14
15
10
17
18
19
20

L2V

L2500
L5000
L0875
8125
L3900
L9375
L9048
L9805
L9893
99
L9908
L9983
R

1.0000
1.0000

1.0000
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Table 4
Lower bound for P*
If P* : table entry, ¢, is minimax

3 4 S § 7 8 9 10

1667 1250 .1000 .0833 0714 .0025 .0556 .0500

L3333 .2500 L2000 L1667 L1429 1250 .1111 .1000
A81S L3672 L2960 2477 .2128 .1865 .1660 .1495
L6049 L4727 .3856 .3248 .2803 .2463 .2196 .1981

L7087 5649 (4615 3972 .3446 3059 (3717 2455

805 .o440 .S412 4642 4051 .3589 .3218 .2914

L3390 L7108 L0008 L5250 L4013 L4110 L3097 L3357

L8829 LTo0d L0045 L5814 (5144

L1858 W8125 0 748 L6318 L5630 5061 (4587 .4189
4

L9566 .8803 .7960 .7174 .06483 .5889

N
9692 .9050 .8282 ,7533 .6855 .6259 .574

6
9846 9406 .8791 .8131 .7497 .6916 .6395 .5933

4000 L4154 L3782

.

9393 .8498 .7584 .6770 6070 .5490 .499%6

—
4=
N
F>
P

.
w

R

ro
o
o
<
i

9248 .8557 .7850 .7192 .6601 .6080 .5

9892 .9532 .8988 .8377 .7772 .7205 .6689 .6225

9924 L9033 9150 584 L8019 L7470 L6902 L6500

G

L9947 (9712 9296 .8783 8242 .7712 .721S  .6757

L9563 L9774 L 0d41S (8948 (8441 7934 L7450 L6998

974 (9824 9514 9092 .8619 8136 7666 .7223

1
<9982 ,9863 .9596 .9217 .8778 .8319 .7866 .7433

PN S PR

e e B G
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let (Kl, v ey Xk) be a multinomial vector with unknown cell probabilitices (pi; ke pk).

A subset of the cells is to be selected in a way so that the cell associated with the smallest
cell probability is included in the selected subset with a preassigned probability, P*.
Suppose the loss is measured by the size of the sclected subset, S.  Using linear programming
* techniques, selection rules can be constructed whicn are minimax with respect to S in the
class of rules which satisfy the P*-condition. In some situations, the rule constructed by
this method is the rule proposed by Nagel (1970) Similar techniques also work for selection

in terms of the largest cell probability. The rules constructed in this fashion are also

minimax for selection in terms of Poisson parameters.




